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ABSTRACT: Melatonin is a pleiotropically acting regulator molecule, which influences numerous 

physiological functions. Its secretion by the pineal gland progressively declines by age. Strong reductions 

of circulating melatonin are also observed in numerous disorders and diseases, including Alzheimer’s 

disease, various other neurological and stressful conditions, pain, cardiovascular diseases, cases of cancer, 

endocrine and metabolic disorders, in particular diabetes type 2. The significance of melatonergic 

signaling is also evident from melatonin receptor polymorphisms associated with several of these 

pathologies. The article outlines the mutual relationship between circadian oscillators and melatonin 

secretion, the possibilities for readjustment of rhythms by melatonin and its synthetic analogs, the 

consequences for circadian rhythm-dependent disorders concerning sleep and mood, and limits of 

treatment. The necessity of distinguishing between short-acting melatonergic effects, which are successful 

in sleep initiation and phase adjustments, and attempts of replacement strategies is emphasized. 

Properties of approved and some investigational melatonergic agonists are compared. 
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The indoleamine melatonin (N-acetyl-5-metho-

xytryptamine) is usually known as the hormone of the 

pineal gland. This role is of particular importance in a 

chronobiological context, especially with regard to its 

effects on the hypothalamic circadian pacemaker, the 

suprachiasmatic nucleus (SCN). However, its spectrum 

of functions is considerably broader, in terms of sites of 

both biosynthesis and action [1-5]. Melatonin is formed 

in numerous organs and cells, such as the gastrointestinal 

tract (GIT), bone marrow, several leukocytes, 

membranous cochlea and, presumably, skin and other 

regions of the central nervous system. It is frequently 

overlooked that, in quantitative terms, extrapineal 

melatonin exceeds by far that found in the pineal and in 

the circulation. Owing to the size of the organ, the 

amounts of melatonin present in the GIT are several 

hundred-fold higher than those in the pineal [6, 7]. 
Extrapineal melatonin is either poorly released to the 

circulation or for short periods of time. Relatively high 

amounts have been reported to enter the blood from the 

GIT in response to nutritional factors, as a post-prandial 

response of short duration [7-9]. These pulses of 

melatonin are of minor importance to the circadian 

system, not so much because of its brevity, but rather as 

a consequence of shape and phase position of the so-

called phase response curve (PRC). The PRC describes 

the resetting of a rhythm by entraining signals in 

dependence of the phase (i.e., the time point within the 

circadian cycle) of administration of the signal. Usually, 

a PRC contains phases in which the rhythm is delayed, 

others in which it is advanced and also a silent zone in 

which the rhythm is poorly affected. In humans, the PRC 

for melatonin has been determined, which mainly 

reflects the resetting in the SCN [10, 11]. A post-prandial 

release of melatonin during the day mostly occurs in the 

silent zone, whereas much stronger effects are observed 
in phases of pineal melatonin secretion in which the 

hormone is capable of readjusting the rhythmicity of the 
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SCN. In mammals, pineal melatonin biosynthesis and 

release are, in turn, under the control of the SCN and 

largely confined to the night. From the pineal gland, 

melatonin is not only secreted to the circulation, but also, 

via the pineal recess, to the third ventricle [12-14].  

Collectively, all these findings indicate that 

melatonin serves numerous functions in various organs 

and that effects at the SCN constitute an important, but 

by far not the exclusive function. The awareness of this 

multiplicity of roles and actions gains increasing 

importance, because melatonin and synthetic 

melatonergic drugs come more and more into use, e.g., 

for treating sleep difficulties and mood disorders. These 

compounds should not be simply regarded as sleeping 

pills or antidepressants, which might be easily compared 

with classic drugs for the respective indications. They 

strongly differ in their mode of action, but, additionally, 

they exert numerous other effects beyond the reason for 

treatment. This insight can be of great practical 

relevance, especially concerning the immunological role 

of melatonin. Again, the actions are diverse. They 

comprise antiinflammatory, but also immunoenhancing 

effects [2-5]. This latter property can be highly undesired 

in cases of autoimmune diseases and should be regarded 

as a contraindication for melatonin and melatonergic 

drugs in these patients. Despite some controversies on 

this issue and the clearly antiinflammatory actions of 

melatonin in another context, the methoxyindole 

obviously aggravates symptoms of rheumatoid arthritis 

(RA) via stimulation of proinflammatory cytokines [15-

17]. Moreover, blood melatonin levels were enhanced in 

RA patients and the circadian peak of the hormone was 

advanced [16]. For caveats concerning other diseases, 

but also adolescents and pregnant women see refs. [18, 

19]. 

The remarkable pleiotropy of melatonin unavoidably 

leads to a plethora of effects if the hormone or synthetic 

melatonergic drugs are administered. Many of these 

actions can be beneficial, but not necessarily all of them. 

However, the other side of the coin is that a pathological 

decrease in melatonin formation and secretion has also 

numerous consequences on the functioning of a body, as 

will be outlined in this article. 

Biosynthesis, Metabolism and Signal 
Transduction Mechanisms 

 

For the better understanding of several aspects to be 

discussed, the biosynthetic, catabolic and signaling 

pathways are briefly described. Melatonin is synthesized 

from serotonin in two steps, N-acetylation to N-

acetylserotonin (NAS) followed by O-methylation 

(Figure 1). The reverse sequence of these steps is 

possible, but remains in vertebrates physiologically 

irrelevant. Sufficiently high amounts of the precursor 

serotonin are usually available, but an exception was 

described for a defect mutation of the sepiapterin 

reductase gene [20]. The product of this enzyme, 

tetrahydrobiopterin (BH4), is required by aromatic 

amino acid hydroxylases. BH4 deficiency causes, beside 

other effects, poor synthesis of 5-hydroxytryptophan 

and, thus, serotonin, with the further consequence of a 

flattened melatonin rhythm [20]. 

 

 

 
 
Figure 1: Biosynthesis and catabolism of melatonin. The 

main pathway is indicated by bold arrows. Abbreviations: 

AAAs, aryl acylamidases; AAF, arylamine formamidase; 

AANAT, arylalkylamine N-acetyltransferase; AFMK, N
1
-

acetyl-N
2
-formyl-5-methoxykynuramine; AMK, N

1
-acetyl-

5-methoxykynuramine; ASMT, acetylserotonin 

methyltransferase; CYP, cytochrome P450 monooxygenase 

or dealkylase; HIOMT, hydroxyindole O-methyl-

transferase; MelDA, melatonin deacetylase. * Pyrrole ring 

cleavage is catalysed by various enzymes, such as 

indoleamine 2,3-dioxygenase, myeloperoxidase, other 

peroxidases, and by several reactive oxygen species. ** 

Alternately, AFMK can be deformylated by 

hemoperoxidases and photochemical mechanisms. For 

further metabolites see ref. [3]. 
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In the pineal gland and several other sites, N-

acetylation of serotonin is catalysed by arylalkylamine 

N-acetyltransferase (AANAT) [21] and O-methylation of 

NAS by hydroxyindole O-methyltransferase (HIOMT, 

alias acetylserotonin methyltransferase, ASMT). 

AANAT is usually regarded as the rate-limiting enzyme 

of melatonin biosynthesis, but this conclusion has been 

disputed for maximal nocturnal values in the rat pineal, 

in which a limitation by HIOMT has been reported [22]. 

The situation may be different in some extrapineal sites 

of melatonin synthesis. Preliminary data indicate that the 

steps of N-acetylation and O-methylation may 

sometimes be catalysed by alternate acetyl and 

methyltransferases [4]. The participation of another 

arylamine N-acetyltransferase, NAT-1, was assumed to 

be involved in cutaneous melatonin synthesis [23, 24]. 

NAS formation was observed in the skin of C57BL/6 

mice [25], which are partially deficient in pineal 

AANAT because of a point mutation, which leads to a 

splice variant containing a pseudoexon with a stop codon 

[26]. However, functionally active splice variants of 

AANAT were found in leukocytes and bone marrow 

cells of two pineal melatonin-deficient strains and, to a 

certain extent, also in their pineals [27]. Therefore, the 

additional absence of an active HIOMT may strongly 

contribute to melatonin deficiency in the pineals of the 

respective mouse strains. The extrapineal cells also 

contained substantial amounts of melatonin, which was 

released to some extent into the circulation [27]. 

Moreover, alternate, cell-specific splicing mechanisms 

seem to allow extrapineal melatonin synthesis even in 

mice carrying the mutation described. The important 

message from these findings is that melatonin can be 

formed in peripheral organs and cells even if the pineal 

gland does not produce substantial amounts of its 

hormone. 

The major pathway of melatonin catabolism consists 

of 6-hydroxylation by hepatic monooxygenases, 

CYP1A2, CYP1A2 and CYP1B1, which allows 

conjugation with sulfate to give the easily excretable 

metabolite, 6-sulfatoxymelatonin [2] (Figure 1). For this 

reason, levels and rhythm of melatonin can be indirectly 

followed by measuring this urinary product. 

Surprisingly, formation of 6-sulfatoxymelatonin was also 

detected in the brain, although the conjugation should 

disfavor its release from the CNS (for discussion see ref. 

[28]). In the tissues, alternate pathways of melatonin 

catabolism exist, but are of minor quantitative 

importance. Melatonin can be demethylated to NAS by 

CYP2C19, with eventual contributions by CYP1A2 and 

CYP1A1 [28]. Deacetylation to 5-methoxytryptamine by 
a specific melatonin deacetylase or less specific aryl 

acylamidases is also possible [28, 29]. An entirely 

different pathway consists of oxidative pyrrole ring 

cleavage, which leads to N
1
-acetyl-N

2
-formyl-5-

methoxykynuramine (AFMK). This process can be 

catalyzed by remarkably many agents and includes 

various enzymes, especially dioxygenases and 

peroxidases, and several pseudoenzymatic, free radical-

mediated and photochemical reactions (summarized in 

ref. [30]). AFMK was originally believed to be a major 

brain metabolite, since it was detected in large amounts 

after injection of melatonin into the cisterna magna of 

rats [31]. Although AFMK was reported to be also 

formed by several cell types, such as macrophages and 

keratinocytes, as discussed in ref. [28], no substantial 

amounts of this metabolite were detected in human urine 

and in various mouse tissues [32]. However, the same 

study described a new metabolite that might have been 

formed from AFMK, a finding that may be in 

accordance with the assumed transitory nature of 

methoxylated kynuramines (cf. ref. [30]). Nevertheless, 

AFMK has been detected in the human cerebrospinal 

fluid of patients with viral meningitis [33]. A negative 

correlation became apparent to the levels of IL-8 and IL-

1β, which were lower in CSF samples containing over 50 

nM AFMK, compared to those between 10 and 50 nM. 

Notably, these AFMK concentrations are by orders of 

magnitude higher than nocturnal plasma concentrations 

of melatonin. In conjunction with antiinflammatory and 

neuroprotective properties ascribed to AFMK [30, 31, 

34], this metabolite remains to be of pathophysiological 

interest. The same may be valid for several secondary 

products that derive from AFMK (cf. ref. [30]). Another 

metabolite formed from melatonin by free radical-

mediated reactions is cyclic 3-hydroxymelatonin 

(c3OHM), which is strongly elevated under conditions of 

oxidative stress, such as exposure to ionizing radiation 

[35].  

Detailed information about signal transduction 

pathways is available for the G protein-coupled 

membrane receptors of melatonin. In mammals, two 

receptor subtypes are known, MT1 (alias Mel1a, 

MTNR1A) [36] and MT2 (alias Mel1b, MTNR1B) [37]. 

The classic effect of both receptors is transmitted by 

pertussis toxin-sensitive Gi proteins. In these case, the α 

subforms are usually αi2 and αi3, which mediate 

decreases in cAMP and, thereby, in protein kinase A 

activity and CREB phosphorylation. Meanwhile, 

additional pathways and regulatory interconnections 

have been identified, which involve αq and βγ subunits, 

activation of phospholipase Cβ, protein kinase C, MAP 

and CaM kinases, upregulation of phosphoinositide 3-

kinase (PI3K) and Akt (protein kinase B), regulation of 

Ca
2+

 and K
+
 channels, and modulation of cGMP 

(summarized in ref. [38]). MT1 was shown to be 

modulated by the PDZ domain protein MUPP1 (multi-

PDZ domain protein 1; PDZ = PSD-95/Drosophila disc 
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large/ZO-1 homology) and the melatonin receptor 

homolog, GPR50, which has no affinity to melatonin, 

and, perhaps, by heterodimerization with MT2 [38]. 

Additional regulatory interconnections seem to exist, in 

which either circadian oscillator proteins are involved or 

factors controlling energy metabolism [39]. MT1 and 

MT2 display overlapping, but not identical actions. In a 

number of cases, they were shown to mutually substitute 

for each other, but, with regard to other functions, they 

can behave in an antagonistic way. For instance, MT1 

activation leads to vasoconstriction, but MT2, present in 

other parts of the vasculature, to vasodilation [40]. 

The membrane receptors MT1 and/or MT2 have been 

shown to be present in numerous human tissues, such as 

duodenal enterocytes, colon, caecum and appendix, 

gallbladder epithelium, parotid gland, exocrine pancreas, 

β cells of endocrine pancreas, skin, breast epithelium, 

myometrium, placenta, granulosa and luteal cells, fetal 

kidney, cardiac ventricular wall, aorta, coronary and 

cerebral arteries and other parts of peripheral 

vasculature, brown and white adipose tissues, platelets, 

different types of immune cells, and various parts of the 

CNS and associated tissues (for further details, functions 

and extensive literature see ref. [5]). This remarkable 

multiplicity of targets unavoidably leads to highly 

pleiotropic effects exerted in numerous parts of the body, 

when melatonin or melatonergic drugs are 

pharmacologically administered, a fact that is usually not 

emphasized by vendors of respective pills designed for 

improving sleep or attenuating depressive symptoms. 

The highest density of melatonin membrane receptors is 

found in the SCN, the structure that is responsible for the 

chronobiotic, i.e., phase shifting effects of melatonin and 

also for important actions in sleep initiation, as will be 

discussed in the next section. 

Numerous other binding sites of melatonin have 

been described, in addition to the membrane receptors. 

However, their physiological relevance in humans is 

either unknown or controversial. A protein transiently 

believed to represent a third melatonin receptor and 

found in the literature under the name “MT3“ has turned 

out to be an enzyme of xenobiotic metabolism, quinone 

reductase 2 (QR2) [41-43]. Melatonin also binds to 

transcription factors belonging to the retinoic acid 

receptor superfamily, in particular, splice variants of 

RORα (retinoic acid receptor-related orphan receptor-α; 

human gene ID: 6095), designated as RORα isoform a 

(alias RORα1), RORα isoform b (alias RORα2) and 

RORα isoform d (formerly called RZRα), and the 

product of another gene, RORβ (alias RZRβ; human 

gene ID: 6096) [5, 44-46]. RORα isoforms are almost 
ubiquitously expressed in the body, whereas RORβ is 

mainly found in the nervous system. Although many 

investigators agree about regulation of gene expression 

by melatonin via ROR transcription factors, this issue 

has remained controversial. RORs are chrono-

biologically important, because they also interact with 

circadian core oscillators and thereby influence phasing, 

resetting and period lengths of circadian rhythms. 

However, it remains to be clarified whether or not these 

are melatonin-independent actions [39]. Moreover, some 

RORs seem to have other or additional ligands. 

Even less is known about the role of melatonin 

binding to calmodulin, calreticulin and some other 

proteins with partial homology to calreticulin, and on 

binding to the mitochondrial complex I [38]. However, 

these findings may have the potential of further 

expanding the pleiotropy of melatonin. Finally, it should 

be mentioned that melatonin and some of its metabolites 

are potent free radical scavengers [47-51]. In humans, 

these actions which do not require receptors and 

signaling mechanisms are, in quantitative terms, 

presumably only relevant at high pharmacological doses, 

whereas receptor-mediated circadian, antiexcitatory, 

antiinflammatory and mitochondrial effects that reduce 

radical formation and enhance the expression of 

antioxidant enzymes physiologically contribute to 

antioxidative protection [50].  

Melatonin and the Suprachiasmatic Nucleus: 
Output and Input  

 

The SCN receives, in addition to inputs from other brain 

areas, such as the intergeniculate leaflet, its main 

information from the eye. The relevant photoreceptors 

are blue-absorbing melanopsin-containing retinal 

ganglion cells and green-absorbing cones [52-54]. The 

photic information entrains the circadian master 

oscillator system, which is composed of numerous 

cellular clocks. Within the SCN, groups of cells 

constitute several, internally coupled oscillatory subsets, 

which can differ in their resetting by photic and non-

photic time cues [55, 56]. Moreover, the left and the 

right SCN may behave differently in respective 

experimental protocols and can lead to temporal splitting 

of rhythmic output functions such as locomotor activity 

[57]. In other, forced desynchronization protocols, 

differences between the ventrolateral and dorsomedial 

SCN zones have been observed in rats [58]. 

In mammals, the information about the circadian 

phase is transmitted to the pineal gland through a 

neuronal connection, via the paraventricular nucleus, a 

sympathetic connection from the intermediolateral cell 

column of the upper thoracic cord to the superior 

cervical ganglion, whose fibers innervate the pineal [59]. 

Melatonin synthesis is stimulated by β1-adrenergic 

upregulation of cAMP and α1B-adrenergic activation of 

phospholipase Cβ that leads to rises in Ca
2+

, protein 
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kinase C and CaM kinases. These processes are 

modulated by several peptidergic and glutamatergic 

mechanisms [3]. 

The rhythm of melatonin synthesized in and released 

from the pineal gland is characterized by a prominent 

nocturnal peak, which also contains temporal 

information that had originated in the SCN [60]. Insofar, 

melatonin release represents an output function of the 

SCN. However, melatonin also acts as an input to the 

SCN by feeding back to this structure [61]. In the SCN, 

it mainly exerts two effects. One consists in a 

suppression of neuronal firing that can be attributed to 

MT1-dependent decreases in cAMP and, presumably, 

conductivity changes of cation channels. The other one is 

of chronobiotic nature, i.e., the capability of readjusting 

the circadian phase in the oscillator system of the SCN, 

in accordance with the PRC for melatonin. In many 

mammals, the chronobiotic actions are mediated by MT2 

receptors, but their poor expression in the human SCN 

may indicate an additional function of MT1, as discussed 

elsewhere [5]. The question of why such a feedback is 

necessary, although the photic information from the SCN 

steers the activity of the pineal gland, may find its 

answer in another effect of light, namely the acute 

suppression of melatonin biosynthesis [60]. This latter 

action is more immediate and rapid than a light-induced 

phase shift of the temporally more inert circadian 

oscillator that is based on rhythmic gene expression and 

transcriptional inhibition. Therefore, melatonin 

contributes to the effective clock resetting by the phase 

of its rise. However, in modern civilizations, individuals 

can be exposed to nocturnal light, for reasons of rotatory 

shift-work or life style. Under these conditions, the acute 

suppression of melatonin leads to both rhythm 

perturbations – in addition to those directly induced in 

the SCN – and melatonin deficiency in circadian phases 

in which the hormone is required for optimal functioning 

of the body [39, 62]. The importance of such a lack of 

melatonin is immediately evident, as soon as one 

becomes aware of the highly pleiotropic role of the 

hormone that controls and orchestrates numerous 

physiological processes [2-5, 39].  

A specific effect of melatonin at the SCN concerns 

sleep initiation. MT1-mediated actions favor the onset of 

sleep via the hypothalamic sleep switch, a structure 

characterized by typical on-off responses. On the basis of 

mutual inhibition, it alternately activates either wake-

related neuronal downstream pathways that involve 

locus coeruleus, dorsal raphe nucleus and 

tuberomammillary nucleus or, under the influence of 

melatonin, sleep-related pathways via the ventrolateral 
preoptic nucleus [63, 64]. The MT1-dependent 

suppression of firing by SCN neurons seems to be 

decisive for the activation of the sleep-promoting 

circuits. However, the sleep-inducing actions of 

melatonin are more complex and comprise thalamic 

effects that include thalamocortical interplay and are 

detectable in the promotion of sleep spindles [18, 65, 

66]. Thus, the feedback by melatonin to the SCN and its 

additional effects in the CNS are important for the onset 

of sleep, a physiological process that is disturbed in 

various disorders. A role of melatonin in sleep 

maintenance may exist as well, but this is not easily 

demonstrated at physiological concentrations of the 

hormone, for reasons to be discussed. 

Melatonin and the Circadian Multioscillator 
System 

 

In the literature, chronobiological effects of melatonin 

have been mostly discussed in relation to the circadian 

master clock, the SCN. However, the earlier view of a 

single clockwork exclusively ticking in this central tissue 

has changed. In fact, numerous peripheral oscillators 

have meanwhile been identified, which are either 

directly coordinated by the SCN [67] or may be, 

sometimes, only loosely coupled to or relatively 

independent of the master clock [39]. In fact, the 

existence of peripheral oscillators is not entirely new, 

since their discovery dates back to 1958 [68], but this 

and other comparable findings did not seem to be 

compatible with concepts developed after the 

identification of the SCN as a circadian pacemaker. To 

date, extrasuprachiasmatic oscillators have been 

identified in various mammalian tissues, e.g., intestine, 

liver, heart, adrenal cortex, pars tuberalis, retina, other 

CNS areas, and also in cultured cells such as fibroblasts 

(reviewed in ref. [39]). Circadian oscillations are 

primarily generated at the cellular level, whereas the 

coupling of a number of oscillating cells can result in a 

more stable collective rhythm. With regard to this 

cellular origin and the expression of clock proteins in 

many tissues [69, 70], the existence of peripheral clocks 

can be expected in numerous if not all parts of the body.  

The complexity of the circadian oscillator system is 

even higher, since parallel oscillators are also acting in a 

single tissue. These are operating on the basis of the 

alternate use of orthologs or paralogs of core oscillator 

proteins. For instance, the clock protein PER1 may be 

replaced by PER2, CRY1 by CRY2, or CLOCK by 

NPAS2. The consequences can be differences in output 

functions. Moreover, the expression of a host of 

additional proteins associated with the core oscillator 

components can vary between cells, with divergent 

consequences of feedbacks to the primary clocks [71]. 

Melatonin has been shown to also influence 

peripheral oscillators and, moreover, to be important for 

the phasing and phase coupling of parallel oscillators 
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within a single tissue. Examples for a role in peripheral 

oscillators have been found in the murine adrenal cortex 

and retina. In the adrenal cortex of the melatonin-

proficient mouse strain C3H, the core oscillator proteins 

PER1, CRY2 and BMAL1 oscillate with robust 

amplitudes, whereas only weak fluctuations and reduced 

average expression levels are observed in the melatonin-

deficient strain, C57BL [72]. In the retinal oscillator, 

C57BL mice did not show significant rhythms in PER1 

and CRY2 levels, whereas robust rhythms were detected 

in C3H mice [73]. In human adrenal explants, inhibitory 

effects of melatonin on adrenal ACTH-induced 

responses of Per1 mRNA, BMAL1, StAR and 3β-HSD 

protein levels as well as cortisol and progesterone 

production have been demonstrated [74]. 

In cultured murine striatal neurons, melatonin 

caused marked decreases in the expression of Per1 and 

Clock and elevations of NPAS2, effects which were 

abolished in MT1 knockouts [75]. Effects of melatonin 

on phase coupling of parallel oscillators were observed 

in the rat SCN. In pinealectomized animals, the maxima 

of Per1 and Per2 mRNAs showed an unusual temporal 

phase difference, but became, again, more tightly 

coupled to approximately normal when these rats were 

treated with melatonin [76]. 

Two important messages can be deduced from these 

findings. (i) Decreases in melatonin, whether caused by 

aging or diseases, should not only affect a single master 

oscillator, but also oscillatory subsets within the SCN, 

and peripheral oscillators as well. (ii) Treatment of 

patients with melatonin or synthetic melatonergic drugs 

can exert effects on the internal coupling of rhythms 

within the SCN and between SCN and peripheral 

oscillators. Therefore, the pleiotropic actions of 

melatonin and its synthetic analogs do not only directly 

up- or downregulate peripheral physiological functions, 

but also affect their time structure in a complex 

chronobiological manner.  

Reduced Melatonin Secretion During Aging and in 
Various Disorders and Diseases 

 

In the course of aging, the nocturnal melatonin peak is 

usually decreasing, though with considerable 

interindividual variability [77-80]. In several aged 

individuals, the nighttime values are almost 

indistinguishable from those obtained during daytime, 

whereas others maintain a fairly well pronounced rhythm 

with only moderate reductions of nocturnal values. In 

individuals with strongly reduced melatonin, daytime 

values are often decreased, too. Age-dependent 

impairments of melatonin formation are not only 

detected in plasma concentrations, but also in human 

pineal glands [81], saliva [82], cerebrospinal fluid [83, 

84], and in urinary amounts of the main metabolite, 6-

sulfatoxymelatonin [82, 85, 86]. The high interindividual 

variability of the decrease in pineal function is also 

observed in urinary 6-sulfatoxymelatonin levels, which 

can vary in apparently healthy subjects by a factor of 20 

[86]. As long as a melatonin rhythm is detectable, the 

nocturnal peak of plasma melatonin is frequently phase-

advanced in the elderly relative to young individuals 

[79]. Age-related reductions of melatonin can have 

different causes, a progressive deterioration (i) of the 

SCN or (ii) of the neuronal transmission to the pineal, 

reminiscent of changes observed in neurodegenerative 

disorders [79, 87-89], or (iii) pineal calcification [90, 

91]. 

In several neurodegenerative disorders, especially 

Alzheimer’s disease (AD) and other types of senile 

dementia, levels of melatonin are frequently more 

strongly decreased than in age-matched controls [79, 81, 

84, 87-89, 92-95] (Table 1). In many of these patients, 

the melatonin rhythm is practically abolished. These 

declines seem to frequently result from SCN 

degeneration. Reduced melatonin secretion as a result of 

tissue destruction in the SCN has been also observed in 

young individuals diagnosed with hypothalamic 

hamartomas, which may cause precocious puberty [96], 

or with craniopharyngiomas [97-99]. 

Cases of degeneration of the SCN, the pineal or their 

neuronal connections provide an immediately plausible 

interpretation of reductions in melatonin secretion. 

However, there are surprisingly many other diseases and 

disorders in which the pineal hormone is also decreased. 

These include various neurological and stressful 

conditions, pain, cardiovascular diseases, cases of 

cancer, endocrine and metabolic disorders, in particular 

diabetes type 2 and acute intermittent porphyria [100-

142] (Table 1). Further details are discussed in refs. [5] 

and [39]. 

A major question arising from these findings 

concerns the alternative of cause or consequence. In 

some cases, such as acute pain and stress, a decrease in 

melatonin is likely induced by these events. The same 

may occur if a disease is associated with oxidative stress 

and the easily oxidizable melatonin is destroyed by high 

amounts of free radicals. Under conditions of 

neurodegenerative changes, reduced melatonin secretion 

may favor the development of other diseases. However, 

the decision is not always that easy and, moreover, both 

possibilities may exist simultaneously or sequentially, in 

that an otherwise initiated decline of melatonin further 

aggravates a disease, e.g., because of a reduction in 

immunological and antioxidative protection mechanisms.  
A contribution of low melatonin to disease development 

or progression may be deduced, with due caution, from 

the association of various pathologies with gene 
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polymorphisms related to melatonin. Differences in 

either rates of melatonin synthesis or signal transduction 

can lead to the same consequence as an otherwise 

induced decrease of the hormone. A list of respective 

gene polymorphisms [103, 143-183] is presented in 

Table 2. These polymorphisms have been detected in the 

genes of the melatonin membrane receptors, MT1 and 

MT2, of the enzymes of melatonin biosynthesis, AANAT 

and HIOMT, and also of the orphan receptor GPR50. 

This protein, which does not bind melatonin, has been 

identified as a mammalian ortholog of the non-

mammalian Mel1c receptor [184]. It inhibits MT1 by 

heterodimerization and prevents G protein coupling 

[185]. Its precise role in melatonin signaling and the 

conditions under which GPR50 is upregulated await 

further clarification. Various metabolic changes have 

been observed in GPR50 knockout mice [186]. However, 

GPR50 has obviously additional functions beyond 

melatonin signaling, since it was found to also interact 

with the neurite outgrow inhibitor NOGO-A [187] and 

with TIP60, a coactivator of glucocorticoid receptor 

signaling and histone acetyltransferase [188]. 

Notably, there is a remarkable overlap of 

pathologies listed in Tables 1 and 2. Further connections 

between melatonin and diseases may exist, inasmuch as 

polymorphisms of clock genes are concerned, which 

may alter the melatonin rhythm and, moreover, may be 

differently influenced by melatonin. This might be of 

particular interest with regard to cancer, as recently 

discussed [39]. However, it is important to remain aware 

of the very meaning of associations between diseases 

and polymorphisms, which mostly do not represent 

anything else but risk factors. They often become 

effective in combination with others in multifactorial 

etiologies and are sometimes only demonstrable in some 

but not all populations. Nevertheless, the coincident 

observations of reduced melatonin and unfavorable gene 

variants in the same disease or disorder are indicative of 

possible causal relationship that is worth further 

investigation. 

 
Table 1: Diseases and disorders associated with reduced melatonin secretion in humans 

 
Disease/disorder Comments References 

Alzheimer’s disease Stage dependent decreases down to complete 

loss of melatonin rhythm 

[79, 81, 84, 88, 89, 

92-95] 

Pick’s disease  Two cases only [92] 

Autism spectrum disorders Decreases in melatonin or urinary 6-sulfatoxy- 

melatonin frequent, but not generally observed 

[100-106] 

Schizophrenia  Only in a subpopulation [107, 108] 

Multiple sclerosis with major 

depression 

Not observed in major depression alone [109] 

Primary obsessive compulsive 

disorder 

 [110] 

Menière’s disease Possibly related to stress by tinnitus and vertigo [111] 

Macular degeneration   [112] 

Cases of severe epilepsy High interindividual variation.  

However, increases during seizures   

[113, 114]  

[113, 115] 

Coronary heart disease, myocardial 

infarction, cardiac syndrome X 

 [116-122] 

Fibromyalgia Decreases observed in women 

Uncertainties concerning levels 

Pain reduced by melatonin 

[123]  

[124]  

[124-128] 

Neuralgia  [123] 

Migraine  

Pain reduced by melatonin 

[129, 130] 

[128] 

Bulimia  [123] 

Critical illness   [131-133] 

Postoperative stress Decreases in patients without complications, 

but strong increases in those with delirium 

[134] 

Hypothalamic hamartoma  [96] 

Craniophapharyngioma  [97-99] 

Endometrial cancer  [135] 

Non-small cell lung cancer In part caused by pain? [136] 

Acute intermittent porphyria Further decreased by seizures [137, 138] 

Hypergonadotrophic hypogonadism   [139, 140] 

Diabetes type 2  [141, 142] 
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Weakening of Clock Functions, Dysphased 
Melatonin Rhythm and Resetting 

 

Impairments of melatonergic activity have always to be 

seen in the context of clock functions. This may not only 

concern the SCN as a master clock, but also peripheral 

oscillators, although the actual knowledge of 

chronobiological melatonin effects in the periphery are 

still insufficient. The need for detailed analyses of 

peripheral signaling pathways and their metabolic links 

has been recently addressed [39].  

Lowered or dysphased melatonin rhythms can result 

from functional impairments in the SCN or its input and 

output connections. On the other hand, reduced 

melatonin secretion can lead to a poor feedback to the 

SCN and, thus, failure of dark-induced phase resetting. 

In either case, a crucial question is that of whether 

exogenous melatonin or administration of synthetic 

melatonergic drugs may still be capable of readjusting 

rhythms under these conditions, with regard to both 

phase and amplitude.  

A weakening of clock functions may have different 

reasons. Impairments of the visual input should be 

distinguished from changes in the SCN or output 

pathways, especially with regard to differences in the 

chances for a successful treatment. Reductions in the 

unconscious circadian photoreception can occur in aged 

people because if pupillary miosis or impaired crystalline 

lens transmission, specially concerning blue light that is 

perceived by melanopsin-containing retinal ganglion 

cells. These changes may already promote circadian 

disruption, which can lead to sleep problems, contribute 

to the development of affective disorders, metabolic 

syndrome, an other systemic diseases [189]. In visually 

blind people, circadian photoreception can persist if 

intact melanopsin-containing retinal ganglion cells and 

the connection to the SCN are retained. In other blind 

subjects, circadian rhythms including that of melatonin 

may either poorly couple to or uncouple from external 

time cues. This results, in the first case, in a so-called 

relative coordination, in which the rhythms are gradually 

attracted for several days by an external synchronizer, 

followed by a sequence of days during which the rhythm 

is more strongly shifted, or, in the second case, in free-

running rhythmicity [190-195]. Failure of entrainment by 

external time cues is also known under the term ’free-

running disorder’ (FRD). As long as the neuronal 

connections between SCN and the pineal gland are 

functionally active, the rhythmicity of the SCN widely 

determines the rhythm of melatonin formation and 

release. However, an additional effect of potentially high 
significance can strongly modify the melatonin rhythm 

in sighted subjects, namely, an acute suppression of 

pineal melatonin by nocturnal light, which has to be 

distinguished from the circadian effects [196-199]. This 

is of particular importance in rotating shift work. Both 

effects of nocturnal light, circadian disruption and acute 

suppression of melatonin formation, seem to contribute 

to health problems observed in shift workers. Rotating 

shift work as a risk factor for various diseases or 

disorders, including some types of cancer, cardiovascular 

diseases, peptic ulcers, obesity and metabolic syndrome, 

as well as the epidemiological limits for these 

conclusions have been recently reviewed [39]. 

The interconnections between the SCN and the 

pineal gland always have to be seen from two sides. On 

the one hand, reduced photoreception, SCN dysfunction 

or impaired pineal innervation can be the cause of 

dysphased or flattened melatonin rhythms. On the other 

hand, reduced nocturnal melatonin levels lead to an 

insufficient feedback to the SCN, in other words, to a 

poorer resetting by the dark signal. The two-sided 

relationship between SCN and pineal can gain some 

complexity under conditions of genetic dispositions for 

extremely short or long spontaneous circadian periods 

that lead to difficulties in the proper entrainment to 

external cycles [39, 200]. In a number of individuals, but 

not in every case, it is possible to favor synchronization 

with the external 24-h cycle by enhancing the strength of 

the resetting signals. This may be bright light, especially 

in the morning. Alternately, to reinforce the signal 

darkness, administration of melatonin or synthetic 

melatonergic agonists in the evening can be effective. 

From a theoretical point of view, stable synchronization 

by light or by melatonin is impossible if a 24-h cycle is 

outside the range of entrainment of the deviatant 

individual cycle. An additional aspect, which deserves 

future detailed investigation, concerns optimal phase 

relationships of parallel oscillations in the circadian 

multioscillator system [39]. Circadian disruption and low 

nocturnal melatonin seem to promote uncoupling or 

relative coordination within the multioscillator system. 

Internal desynchronization of rhythms has, in fact, been 

observed and discussed as a cause or an indicator of 

illnesses [39, 201-203]. 

The pathophysiological deviations related to 

malfunctioning of the circadian oscillator system seem to 

be associated with numerous disorders or diseases [5, 

39]. However, the probability of developing relevant 

symptoms may strongly vary, depending on the 

respective pathology and on differences within 

populations owing to unequal combinations of risk 

factors. Among the most frequently observed difficulties, 

problems of sleep initiation and/or maintenance and 

mood disorders are of particular interest. Again, it should 
be emphasized that these disorders, as far as they are 

related to circadian dysfunction, can either result from 

deteriorations of oscillators and their neuronal 
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connections, without a primary contribution of changes 

in melatonin, or, alternately, from changes in melatonin 

secretion, with secondary consequences to the clocks. In 

these two situations, the chances for successfully treating 

these disorders with melatonin or its analogs may not be 

identical, but in either case a chance does exist, as long 

as functional melatonin receptors are expressed in the 

SCN and other relevant central nervous target areas.  

Insomnia represents a complex of diverse disorders, 

which is experienced in the one or other form by most 

people during their lives. About 10% of the population 

are affected chronically and, in this case, the treatment is 

often challenging [204, 205]. Insomnia is characterized 

by one or more of the following symptoms: difficulty of 

falling asleep, numerous nocturnal awakenings, early 

morning awakenings, reduced total amount of sleep or 

restorative sleep, with consequences of daytime 

somnolence, fatigue, irritability, difficulty of 

concentrating and performing everyday tasks. 

Importantly, insomnia is associated as a comorbid 

symptom with other illnesses and disorders. Very 

frequently, this is observed in mood disorders, but it also 

occurs in cardiovascular diseases, weight gain and 

glucose intolerance.  

With regard to the diversity of causes of insomnia, 

subtypes related to circadian dysfunction [85, 206-209] 

have to be distinguished from sleep difficulties of other 

etiology. The so-called circadian rhythm sleep disorders 

(CRSDs) can, again, result from different causes. One of 

these possibilities is an innate or acquired deviation from 

an easily entrainable spontaneous period, as present in 

familial advanced sleep phase syndrome (FASPS) and 

delayed sleep phase syndrome (DSPS). Polymorphisms 

in the core oscillator genes Per2 and Per3 (Period 2 and 

3) have been identified as being causative of some 

CRSDs [210, 211], but mutations in other clock genes 

may also lead to this type of disorder. As discussed 

above, insufficient entrainment may also exist in some 

blind subjects or because of an otherwise impaired light 

input pathway. Consequently, free-running or relatively 

coordinated rhythms lead to sleep difficulties on those 

days in which a daytime circadian phase is reached at 

night. Moreover, irregular sleep-wake patterns are 

associated with low circadian amplitudes [209], 

especially in elderly patients, in which deteriorations of 

the SCN [212-214] or decreases in nocturnal melatonin 

[78, 215] contribute to insomnia or may even be of 

causal relevance. 

The regularly observed association of mood 

disorders with sleep disturbances has led to numerous 

assumptions concerning a mechanistic relationship. 

Some investigators have considered insomnia symptoms 

as a predictor of a depressive disorder (discussed in ref. 

[216]). This has been supported by findings showing 

sleep disturbances or changes in sleep architecture as 

prodromal symptoms occurring several weeks prior to 

the recurrence of a depressive episode [217-219]. 

Although insomnia is a comorbid symptom of most 

mood disorders, an etiologic relevance of circadian 

malfunction is only demonstrable or likely in some 

subtypes of this highly diverse complex of disorders.  

 

 
Table 2: Diseases, disorders and metabolic changes associated with gene polymorphisms of melatonin membrane 

receptors, a receptor homolog and enzymes of melatonin biosynthesis 
 

Disease/disorder  Gene  Refs. 

Autism spectrum disorders HIOMT (= ASMT) [103, 143, 144] 

ADHD (attention-deficit and  

hyperactivity disorder) 

MT1 (= MTNR1A)  

HIOMT (= ASMT) 

[145]  

[145] 

Schizophrenia MT1 (= MTNR1A) [146] 

Major depression  AANAT [147] 

Recurrent depression HIOMT (= ASMT) [148] 

BP (bipolar disorder)  GPR50 [149, 150] 

SAD (seasonal affective disorder) GPR50 [151] 

Rheumatoid arthritis  MT2 (= MTNR1B) [152] 

Adolescent idiopathic scoliosis 

(perhaps only in combination with 

other risk factors) 

MT2 (= MTNR1B) [153]  

[154] 

Coronary artery disease MT1 (= MTNR1A) [155] 

Diabetes type 2, prediabetes  MT2 (= MTNR1B) [156-180] 

Elevated fasting triglycerides GPR50 [181] 

Elevated fasting glucose MT2 (= MTNR1B) [157-160, 162, 167-170, 177-179] 

Elevated cholesterol MT2 (= MTNR1B) [180] 

Polycystic ovary  syndrome

  

MT1 (= MTNR1A) 

MT2 (= MTNR1B) 

[182]   

[183] 
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Deviations in the circadian system are likely present 

in seasonal affective and bipolar disorders, as indicated 

by polymorphisms in core oscillator genes, such as Per2, 

Cry2, Bmal1 (= Arntl) and Npas2 in winter depression 

[220-223], Per3, Cry2, Bmal1 (Arntl), Bmal2 (Arntl2), 

Clock, Dbp, Tim, CsnK1ε and NR1D1 in bipolar disorder 

[224-231]. Moreover, DSPS, i.e., a CRSD, was found to 

be associated with seasonal affective disorder [232]. 

Since both bipolar and seasonal affective disorders 

display characteristics of long-period rhythmicity, which 

can be interpreted in terms of poor coupling of circadian 

oscillations to external and/or internal rhythms, this is 

not the case in major depressive disorder (MDD), in 

which the situation is less clear. On the one hand, it has 

been concluded that no convincing evidence exists for an 

involvement of the circadian system [233], but, on the 

other hand, Cry1 and Npas2 polymorphisms were found 

to be associated with MDD [234]. With regard to the 

heterogeneity of MDD, a role of circadian rhythmicity 

cannot be excluded in some of its subtypes.  

While the significance of the circadian system for 

disturbances of sleep and some affective disorders is 

obvious, the genetic evidence for a role of the 

melatonergic system is relatively poor. A few hints may 

exist in findings mentioned in Table 2. Moreover, 

bipolar disorder was reported to be associated with a 

polymorphism of the RORB gene [235]. This gene 

encodes the transcription factor RORβ, which is 

considered as a nuclear melatonin receptor. However, it 

has remained unclear as to whether the action of RORβ 

reflects a melatonin-dependent or melatonin-independent 

input into the circadian clock. Beyond the genetic aspect, 

there is, however, good reason to conclude that reduced 

levels of melatonin or impaired melatonergic signaling 

contribute to low amplitudes and poor coupling of 

circadian oscillations. Therefore, melatonin and synthetic 

melatonergic drugs are an option for reversing circadian 

malfunction, as long as the SCN is functionally intact. 

This will presumably be of future importance in the 

treatment of CRSDs and, especially, cyclically occurring 

affective disorders. 

Melatonin and Alzheimer’s Disease 

 

Several reasons have given rise to the assumption that 

melatonin might be beneficial in AD patients. Mainly, 

these include melatonin deficiency in AD, the 

malfunctioning of the circadian master clock, and the 

antioxidant and antiinflammatory actions of melatonin, 

with regard to oxidative stress and atypical inflammatory 

processes observed as accompanying symptoms with a 

presumed contribution to disease progression [236]. 

Some experimental data in transgenic mice or in vitro 

had indicated a possibly beneficial role. In the transgenic 

mouse model, melatonin treatment starting relatively 

early in life not only lead to reductions in oxidative 

damage and in amyloid accumulation but also to an 

increase in survival [237]. In another study, reductions in 

neuronal apoptosis and damage to the cholinergic system 

were reported, which might indicate a support of 

cognitive functions, and corresponding behavioral 

improvements [238]. Moreover, melatonin was shown to 

possess antifibrillogenic properties [239]. However, no 

substantial benefits were demonstable after a later onset 

of treatment [240]. This latter finding is important to 

humans, as AD is usually diagnosed relatively late in 

life. Therefore, clinical improvements by melatonin 

cannot be expected in terms of delay of disease 

progression or life extension.  

With regard to the poor efficacy of other approved 

treatments in AD, such as cholinergic or memantine 

therapies [241], and to the unclear early etiology of AD, 

the findings on melatonin mainly demonstrate that a late 

onset of therapy is not promising. It remains to be 

clarified whether new ionophore strategies based on the 

reduction of metal toxicity and prevention of 

intracellular metal depletion will be more successful 

[241-243]. In such a case, melatonin may be re-

considered as an adjunctive therapy to improve 

chronobiological and sleep parameters, as far as they are 

not accessible to ionophore treatment and remain 

impaired. 

Although a clinical value of melatonin in preventing 

or delaying disease initiation and progression appears to 

be questionable, beneficial effects are not generally 

excluded and have, in fact, been described. These 

concern AD-associated sleep disorders, behavioral 

changes, in particular, “sundowning” agitation, and 

cognitive impairments. However, the findings of several 

studies are highly divergent. In part, this may be seen on 

the background of a high interindividual variability 

among AD patients. In groups with a similar degree of 

cognitive impairment, degeneration of brain structures 

related to circadian rhythms and sleep may have 

progressed to a different extent. As long as the SCN and 

downstream structures controling wakefulness and sleep 

are operating, at least to a certain extent, there remains a 

chance for improvements of sleep and behavioral 

functions associated with circadian time patterns. Several 

smaller studies of variable length, from a few weeks to 

two or three years, reported improvements in sleep onset, 

sometimes also in number of awakenings, sleep quality 

or reduction of daytime somnolence [244-250], in one 

study using a combined therapy of melatonin in the 

evening and bright light in the morning [251]. 
Importantly, sundowning was found to be reduced, in 

some individuals markedly, by melatonin [244, 246-248, 

250], an effect of particular importance with regard to 
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the caregiver’s burden. However, the largest clinical trial 

[252] did not reveal statistically significant differences in 

objective measures of sleep. An increase in nocturnal 

total sleep time and decreased wake after sleep onset, as 

determined on an actigraphic basis, were only apparent 

as trends in melatonin-treated cohorts, although 

melatonin facilitated sleep in a certain number of 

patients. On subjective measures, however, caregivers’ 

ratings of sleep quality showed a significant 

improvement in a sustained-release melatonin group 

relative to placebo. The outcome of this study underlines 

that the combination of individuals differing in extent 

and regional distribution of neurodegeneration results in 

a statistical heterogeneity problem [236]. What is still 

helpful in one patient may already be unsuccessful in 

another one. 

Melatonin and Parkinson’s Disease 

 

The usefulness of melatonin in Parkinson’s disease (PD) 

is even more controversial than in AD. A particular 

problem results from the investigators’ focus on the 

stage at which the most severe Parkinsonian symptoms 

appear, namely, the advanced damage to the 

nigrostriatum. In numerous preclinical studies, animal 

models based on the administration of neurotoxins such 

as 6-hydroxydopamine, 1-methyl-4-phenyl-1,2,3,6 

tetrahydropyridine (MPTP), sometimes also rotenone, 

maneb and paraquat, have been applied with the 

intention of mimicking the nigrostriatal degeneration. In 

short-term studies of this type, melatonin consistently 

reduces the damage caused by these compounds [253-

262], which are also oxido- and mitochondrial toxins. 

Since melatonin is a powerful multifunctional 

antioxidant, antinitrosant, antinitratant and also 

mitochondrial modulator [47, 48, 50, 263-271], these 

effects are not surprising, but rather reflect the 

counteraction against reactive oxygen and nitrogen 

species including the reduction of their formation. In 

more extended investigations, the outcome was 

contradictory. One study reported protective effects in a 

chronic model [272], whereas two others did not reveal 

improvements [273, 274]. Regardless of whether 

nigrostriatal degeneration can be gradually antagonized 

in the respective models, these approaches do not 

consider the etiology of PD, which does not start in the 

nigrostriatum, but rather in the brain stem or even the 

spinal cord of subjects which remain asymptomatic for a 

long period of time [275-277]. Therefore, the prodromal 

extranigral degenerative changes are neglected in the 

animal models, although the appearance of Lewy bodies 

can be traced back to much earlier stages.  

With regard to the use of melatonin in PD patients, a 

potentially serious reason of concern has been advanced 

by Willis, who interprets PD as a disease of melatonin-

dopamine imbalance or, in another term of his, as a 

”melatonin hyperplasia” disorder [278]. He also reported 

that melatonin antagonists are beneficial in PD [279]. 

This conclusion is not in good accordance with findings 

on reduced MT1 and MT2 expression in the striatum and 

other brain regions such as the amygdala in PD [280]. 

No enhanced melatonin secretion was observed in the 

majority of patients tested [281, 282], but rather, 

sometimes, reduced amplitudes of the melatonin rhythm 

[283]. Circadian phase advances of the melatonin rhythm 

were attributed to the treatment with L-DOPA, but not 

seen in “de novo“ patients [283]. Therefore, the 

assumption of a pathologic melatonin overproduction is 

not supported by available data. Findings on the use of 

bright light to suppress melatonin, which was also 

reported to be beneficial [284], may be alternately 

interpreted in terms of a strengthening of the circadian 

system, apart from the fact that the approach disregards 

the enhanced “rebound secretion” of melatonin 

following the transient suppression [282]. With regard to 

PD etiology, it remains to be demonstrated whether the 

concept of a melatonin-dopamine imbalance would be 

applicable to the early stages of the disease, in which the 

nigrostriatum is not yet affected. To date, it seems that a 

caveat concerning the treatment with melatonin or 

melatonergic agonists may be deduced from the reported 

beneficial effects of melatonin antagonists [279]. 

Despite the reservations discussed, melatonin and 

synthetic melatonergic agonists have been considered for 

treating sleep problems in PD and depressive symptoms 

that are frequently associated with this disease [282]. 

Some improvements of sleep have been demonstrated, 

but usually they remain relatively modest. With regard to 

depressive symptoms in PD, effects of agomelatine 

would include non-melatonergic actions [282, 285]. 

Melatonin, Metabolic Syndrome, Insulin 
Resistance and Diabetes Type 2 

 

This complex of subclinical and clinical disorders and 

diseases is an emerging field in melatonin research. In 

part, the interest in the role of melatonin in this area has 

been newly stimulated by the identification of MT2 

polymorphism as a risk factor for diabetes type 2, as 

mentioned above. Moreover, melatonin was shown to 

modulate insulin secretion in various experimental 

models [286-291]. Concerning the relevance of various 

signaling pathways see discussion in ref. [39]. The 

presence of an endogenous circadian oscillator in the 

islets of Langerhans [292] underlines the importance of 

chronobiological interpretations in sugar, fat and energy 

metabolism, in which melatonin may play a role. In 

perifused rat pancreatic islets, melatonin was shown to 
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phase shift the rhythm of insulin secretion and to 

increase its amplitude [293].  

With regard to the changes in blood glucose, the 

mutual paracrine interactions of insulin and glucagon 

within the pancreatic islet have to be considered. Under 

conditions of insulin resistance, glucagon secretion is no 

longer sufficiently inhibited by insulin. Conversely, 

glucagon stimulates insulin release. In human islets, the 

activation of glucagon secretion by melatonin via MT1 

can override an insulin-depressing, MT2-dependent 

effect at the β-cell and, thus, leads to enhanced insulin 

levels [294]. The stimulatory effect of melatonin on 

glucagon secretion was confirmed in a pancreatic α-cell 

line [295]. In this context, it is of greatest importance to 

distinguish between the actions of melatonin in night-

active rodents and in humans, and to take notice of the 

potentially misleading limits of the animal models. 

Melatonin peaks at night in both nocturnal and diurnal 

mammals, but unlike rodents, which are active and 

mainly feed at night, humans are at rest and fasting in 

this part of the circadian cycle. In humans, glucemia is 

regulated primarily in the night by gluconeogenesis and 

reduced glucose utilization. These effects can be induced 

by nocturnal melatonin which, through stimulation of 

glucagon secretion, ensures an adequate energy source to 

the brain [39]. Thus, the well-established suppression of 

insulin by melatonin observed in rodents is not 

applicable to humans [39, 294]. From a chronobiological 

point of view, this is not at all surprising, since the 

meaning of melatonin for the availability and 

metabolism of nutrients has to be different in nocturnal 

rodents and humans. This reservation has also to be 

made in many other aspects of energy metabolism. 

The involvement of melatonin exceeds the effects on 

insulin and glucagon secretion and extends to prodromal 

metabolic syndromes, with additional consequences for 

hypertension, insulin resistance and, perhaps, also 

obesity. Melatonin’s role in metabolic syndrome has 

been recently summarized [296]. Persistent insulin 

resistance was induced in rats by pinealectomy [297-

299]. In pharmacological settings, melatonin and other 

melatonergic drugs were shown to antagonize insulin 

resistance in rats [19, 300]. Correspondingly, knockout 

of the melatonin MT1 receptor gene was reported to 

induce insulin resistance in mice [301]. However, the 

situation in humans is much less clear. Apart from 

missing pharmacological support for a relationship 

between melatonin and insulin sensitivity, the studies on 

MT2 polymorphisms (cf. Table 2), which largely agree 

with regard to elevated fasting glucose in the respective 

variants [157-160, 162, 167-170, 177-179], mostly do 
not provide data indicating insulin resistance. Some 

studies, however conducted in young individuals, 

explicitly state the absence of an association with insulin 

resistance [164, 175, 179]. Instead, reduced glucose-

stimulated insulin release has been repeatedly described 

in subjects carrying these gene variants [157, 159, 165, 

302]. A possible indication for an association of an MT2 

variant with insulin resistance has been reported in 

polycystic ovary syndrome [183]. It seems that 

additional studies on melatonin receptor variants on 

subjects of advanced age are required before a final 

judgment should be made. 

The situation is similarly controversial concerning 

the role of melatonin in obesity. Although melatonin is 

clearly negatively correlated with the amounts of adipose 

tissue in nocturnal rodents and can reduce visceral fat 

masses in these species under various conditions 

(summarized in ref. [5]), this has not been clearly 

demonstrated in humans. In some studies, melatonin 

levels did not substantially differ between obese and 

normal-weight subjects [303-306], whereas, in others, 

increased melatonin was reported for some obese 

individuals [306-308]. Short-term fasting was reported to 

decrease melatonin [305], which might be in accordance 

with the latter observations. However, in obese post-

menopausal women, melatonin was found to be 

decreased [309]. Thus, more data on humans appear to 

be required, and a particular attention should be paid to 

age and aging. In this context, circadian deviations and 

chronodisruption have to be also considered, which 

occur, e.g., in night-eating syndrome, and as far as 

possible distinguished from obesity alone.  

Properties of Melatonin and Synthetic 
Melatonergic Drugs 

 

The structures of several selected melatonergic agonists 

are shown in Figure 2. Except for TIK-301 (= β-methyl-

6-chloromelatonin), all these compounds represent non-

indolic structures. Ramelteon (Rozerem
®
; TAK-375), 

developed by Takeda, Japan, has been approved in the 

USA by the FDA for the treatment of insomnia. The 

ramelteon metabolite M-II is also depicted, because it 

has melatonergic properties and contributes substantially 

to the overall activity of the parent compound. 

Agomelatine (Valdoxan
®
; S20098), developed by 

Servier, France has been licensed by EMEA for the 

treatment of major depressive episodes (MDE) in adults 

in Europe. In addition to these synthetic drugs, a 

melatonin controlled-release tablet (Circadin
®

), 

developed by Neurim, Israel and UK and also provided 

by Lundbeck and Nycomed, has been approved by 

EMEA for the treatment of insomnia in patients aged 55 

years and over. All other compounds are to date 

investigational drugs, which differ concerning the 

number and outcome of preclinical and clinical studies.  
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Table 3: Affinities of melatonin and a few selected melatonergic drugs towards human MT1 and MT2 receptors. 

 

Compound pKi at MT1    pKi at MT2 References 

Melatonin* 10.09 9.42 [310] 

Ramelteon 10.85 9.95 [310] 

Agomelatine 10.21 9.57 [311] 

GR 196429                     9.85 9.79 [312,313] 

Tasimelteon   9.45 9.80 [314] 

TIK-301  10.09        10.38 [315,316] 

AH-017   8.27 9.16 [313] 

UCM765   8.38        10.17 [316,317] 

UCM924   6.75 9.27 [317] 
 

 

*Other, moderately deviating values from different laboratories are summarized in ref. [19]. pKi values were either directly 

obtained from respective publications or calculated from published Ki values. 

 

The affinities of the agonists towards human MT1 

and MT2 receptors [19, 310-317] are summarized in 

Table 3. The natural hormone has a somewhat higher 

affinity to MT1 than to MT2. This is also the case with 

ramelteon and agomelatine, but not so with several other 

compounds. Even TIK-301, which is most closely 

related to melatonin, has a slightly higher affinity to 

MT2. This property is even more expressed in AH-017, 

UCM765 and UCM924. None of the compounds is 

strictly selective for one of the two melatonin membrane 

receptors, but the relative preference for MT2 is already 

very pronounced in UCM765 and UCM924, in which the 

affinities to the receptors differ by almost or even more 

than two orders of magnitude, respectively. Whether or 

not this property may turn out to be of value, e.g. in a 

possible future treatment of disorders and diseases 

related to MT2 signaling, remains to be studied. 

A major obstacle for the use of melatonin as a 

clinically efficient drug results from its extremely short 

half-life in the circulation, which is mostly in the range 

of 20 - 30 min, sometimes even less, but maximally 

about 45 min [18, 318]. As a solution to this problem, 

controlled-release formulations of the natural hormone, 

such as Circadin
®
, have been developed or, alternately, 

synthetic drugs with a substantially longer half-life. 

Ramelteon is rapidly absorbed by the gastrointestinal 

tract (absorption rate: about 84%) and the circulating 

drug has a half-life in the range of 1 - 2 h [319]. Among 

the melatonergic agonists, ramelteon is the only one with 

considerably higher affinities to both receptor subtypes 

(cf. Table 3). Its metabolism differs profoundly from that 

of melatonin, although it is also substrate of hepatic 

cytochrome P450 monooxygenases (mainly CYP1A2, 

CYP2C and CYP3A). Among the metabolites, M-II (cf. 

Figure 2) is of particular interest, since it also acts as an 

agonist at MT1 and MT2 receptors, with an approximate 

potency of 10% compared to the parent compound. 

Despite its lower affinities, M-II is functionally relevant, 

since its circulating levels are 20 - 100 fold higher than 

those of ramelteon after systemic exposure. Moreover, 

the half-life of M-II is by 2 - 5 h longer than that of the 

parent compound [319]. 

The half-life of agomelatine, which has receptor 

affinities slightly above those of melatonin (Table 3), is 

also in the range of 1- 2 h. Contrary to melatonin and 

ramelteon, it displays the additional property as an 

antagonist of the serotonin receptor 5-HT2C. The 

inhibition of 5-HT2C signaling has been interpreted as the 

cause of agomelatine’s direct antidepressant actions 

[216, 321]. These have to be distinguished from indirect 

melatonergic actions related to adjustments of circadian 

rhythms, which are effective in subtypes of depression 

with an etiology of circadian dysfunction. However, a 

synergistic interaction of melatonergic and 5-HT2C 

signaling has been recently assumed to explain the 

antidepressant action of agomelatine [322].  

The combination of properties as a melatonergic 

agonist and serotonergic antagonist has been recently 

described for TIK-301. This drug was reported to be an 

even more potent inhibitor of 5-HT2C and 5-HT2B 

receptors than agomelatine [19, 323]. Therefore, TIK-

301 may also possess direct antidepressive properties, 

comparable to agomelatine, an assumption which would 

require further clinical substantiation. To date, studies 

have mainly focussed on soporific effects. The chlorine 

at ring atom 6 prevents hydroxylation by CYP 

isoenzymes in this position, i.e., the major catabolic 

pathway of the otherwise similar melatonin. However, 

the half-life of TIK-301 has been reported to be in the 

range of 1 h [315] and is, thus, only moderately 

extended. TIK-301 has received an orphan drug 

designation by FDA and can be used for treatment of 

sleep disorders in blind individuals. 

Tasimelteon is another melatonergic drug that has been 

clinically tested [314], primarily with regard to sleep 

promotion and, in exploratory and pre-clinical trials, for 

antidepressive effects. However, no effects on 5-HT2C 

receptors are known for this compound. The half-life of 

tasimelteon seems to be longer than that of melatonin; in 

monkeys and rats, values around 2 h (between 1 and 3 
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hours) have been reported. For other pharmacokinetic 

data see ref. [324]. 

 

 

 

 
 

 
Figure 2: A selection of several approved or investigational melatonergic agonists. For various 

other agonists see ref. [19]. 

 

 

Pharmacokinetic and, especially, clinical data are 

poorly available for the other investigational agonists, 

whereas pre-clinical data on sleep do exist (cf. ref. [19]). 

GR 196429 and AH-017 were reported to increase the 

amplitude of the melatonin in rats. Deviations in the 

phase resetting properties of GR 196429 compared to 

other melatonergic drugs would require mechanistic 

explanations [19]. The functional importance and 

possible value of preferential binding to MT2 receptors 
described for AH-017 and, even more, UCM765 and 

UCM924 await further exploration. This aspect has been 

recently addressed in mice, in which UCM765 was 

shown to stimulate firing of reticular thalamic neurons in 

an MT2-dependent manner, thereby increasing non-REM 

sleep [325]. These compounds may turn out to be of 

interest for the treatment of disorders and diseases 

associated with impaired MT2 signaling. Finally, it 

should be noted that the agonist UCM924 was designed 

to extent the half-life by blocking a preferred 

hydroxylation site of UCM765 by attaching a fluorine 
atom, and by preventing O-demethylation by substituting 

the methoxy group by its bioisostere, bromine [317]. 
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Another compound, NEU-P1, has received some 

attention because it was reported to inhibit weight gain 

and to improve insulin sensitivity in high-fat/high-

sucrose-fed rats [300]. Additional data summarized 

elsewhere [19] have been published at abstract level and 

include effects on sleep. Chemical and pharmacokinetic 

data remain to be disclosed. According to high doses 

administered to rats, receptor affinities are presumably 

below those of compounds listed in Table 3. 

  

Options for Treatment Based on Short-term Actions 

 

Instead of repeating the numerous clinical data, 

especially on sleep parameters, which have been 

frequently reviewed [18, 19, 127, 128, 216, 236, 245, 

246, 282, 285, 326-342], a general outline will be given 

on the strategies of treatment and their chronobiological 

rationale.  

It is important to distinguish between disorders in 

which only short actions of melatonin are required and 

others in which a substitution therapy aims to replace 

insufficient nocturnal levels of the hormone throughout 

the night. In the first case, the short-lived natural 

hormone may suffice for treatment. A short action is 

sufficient in the case of sleep onset difficulties. 

Melatonin reduces sleep onset latency, frequently 

determined as LNA (latency to non-awake) or, by 

polysomnography, as LPS (latency to persistent sleep), 

already at low doses of 0.1 – 0.3 mg/d of an immediate 

release formulation [326]. However, the effects on sleep 

maintenance remain negligibly low, at these doses. A 

significant reduction of sleep onset latency has been 

observed with all synthetic melatonergic agonists so-far 

tested [18, 19, 314, 326-330, 333, 334, 341, 342]. 

However, the recommended doses of these drugs are 

considerably higher, such as 4 or 8 mg/d for ramelteon, 

despite its higher receptor affinity compared to 

melatonin, or 25 mg for agomelatine. Therefore, the 

synthetic drugs are not of advantage, as long as only 

improvements of sleep onset are intended. Without any 

doubt, the natural hormone has a preferable profile 

concerning tolerability and physiological metabolism. 

Moreover, MT1/MT2-independent effects are presumably 

absent in the synthetic drugs. However, the significance 

of these actions is still poorly understood. 

Short actions are also sufficient if chronobiotic, i.e., 

phase shifting properties of melatonin are decisive. 

Resetting of the circadian oscillators is required in cases 

of rhythm perturbations. These may have been induced 

either (i) externally by light at night or transmeridian 

flights, (ii) by clocks poorly coupled to the 
environmental cycle or (iii) in cases of dysphasing or 

desynchronization within the multioscillator system. 

Insufficient coupling may result from flattened 

oscillations, especially under conditions of reduced 

melatonin secretion due to age or disease. For this 

reason, agents capable of enhancing rhythm amplitudes 

may become of interest. Phenomena such as relative 

coordination, internal desynchronization and abnormal 

phase relationships to external synchronizers or between 

parallel oscillators have been poorly investigated on a 

systematic basis, but they seem to be involved in 

impairments of physical and mental fitness as well as 

bipolar and seasonal affective disorders [230, 233, 343-

347].  

 As far as circadian malfunctioning is implicated in 

these latter types of mood disorders, melatonin can be 

effective in readjusting rhythms and, thereby, improving 

symptoms. It is important to not confuse such effects 

with direct antidepressive actions, which are obviously 

also exerted by agomelatine and TIK-301. Treatments 

with synthetic melatonergic drugs can be expected to be 

beneficial on a circadian basis, but neither a higher 

receptor affinity nor a longer half-life are reasons for 

assuming a superior efficacy compared to melatonin. A 

short-acting chronobiotic such as melatonin is capable of 

inducing phase adjustments, because circadian 

oscillators are largely sensitive to a so-called non-

parametric resetting [348], i.e., by stimuli in which the 

relative change is decisive rather than the absolute level 

of the synchronizer. 

Concerning phase resetting, the treatment has to 

consider some fundamental chronobiological rules. 

Resetting signals are acting according to the respective 

PRC, as outlined above. The time of melatonin 

administration according to the human PRC [10, 11] is 

of utmost importance. Readjustment of rhythms by 

melatonin will only be achieved if it is given in an 

appropriate, sufficiently sensitive phase within the 

circadian cycle. If the rhythm is dysphased because of 

poor coupling to synchronizers, it may take several days 

more until the oscillation has attained the desired phase. 

Disregard of these chronobiological fundaments can lead 

to false conclusions on inefficacy. 

Melatonin or synthetic melatonergic drugs are not 

the only means by which circadian rhythms are reset. As 

mentioned above, this is also possible by light, as long as 

light perception in the blue range and neuronal 

connections to the SCN are not impaired. Light therapy 

is, thus, an option in these cases. In some individuals, a 

combination of light and melatonin in the different, 

respective phases may be also suitable or of advantage. 

However, under conditions of poor accessibility of the 

SCN to light signals, melatonin may be preferred.  

Limits of Substitution Therapies 
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The short-term melatonergic actions have to be clearly 

distinguished from a replacement therapy. This would be 

desired in aged individuals or patients suffering from the 

various diseases associated with decreases in melatonin 

levels (cf. Table 1). Because of the short half-life, 

immediate-release formulations of melatonin cannot 

afford a satisfactory substitution.  

Therefore, synthetic agonists or a controlled-release 

melatonin formulation such as Circadin
®
 should be 

assumed to be superior. With regard to melatonin’s 

exceptionally good tolerability, the pineal hormone may 

be tested first [18]. Among the synthetic drugs, 

ramelteon may be the choice in the USA, because of its 

approval by the FDA. Agomelatine, which is licensed in 

Europe, may give comparably good results. However, 

one should take notice of the restricted approvals of the 

tablets. Circadin
®
 and ramelteon are only licensed for the 

treatment of insomnia, in the case of the controlled-

release melatonin only for individuals of at least 55 

years, agomelatine for the treatment of major depressive 

episodes in adults and TIK-301 for the use in blind 

people. Therefore, the full spectrum of possible 

applications is not covered by the approvals. This is 

particularly valid for agomelatine, which displays all the 

sleep-inducing and chronobiotic effects known from 

melatonin [216, 332, 333, 349]. From this point of view, 

it seems similarly suitable as ramelteon or melatonin. 

In terms of efficacy, all these drugs have been reported 

to be beneficial concerning sleep maintenance or sleep 

quality. Although statistical measures have frequently 

reached significance, the extent of the improvements has 

remained relatively moderate. In elderly patients with 

primary chronic insomnia, the efficacy of ramelteon on 

sleep maintenance was recently found to be highly 

variable [350]. Despite some statistically demonstrable 

increases in sleep duration or sleep efficiency, these 

findings do not imply complete restoration of persistent 

sleep throughout the night [350-352]. The same can be 

concluded for the other melatonergic drugs tested for 

sleep maintenance [314, 316, 324, 340-342, 349, 353, 

354]. Therefore, a convincing replacement therapy in 

melatonin deficiency has not yet been achieved with any 

of the melatonergic drugs, although they may have a 

moderate value in sleep efficiency and a good outcome 

concerning sleep initiation. Whether a replacement 

therapy will be possible by using much higher doses of 

melatonin, such as 50 or 100 mg/d, as recently suggested 

[342], remains to be tested. The standard dose of 

Circadin
®
 is only 2 mg/d. In terms of tolerability and 

non-toxicity, doses of melatonin can be increased with 

less concern than in the case of synthetic drugs. Even 
300 mg/d enterally have been administered for up to 2 

years to ALS patients and found to be safe [355]. 

Concerning the use of agomelatine, a distinction 

between types of depression has to be made, as to 

whether they are based on circadian dysfunction or on 

other reasons. In the first case, short actions are only 

required for phase adjustments and, in chronobiological 

terms, the efficacy of agomelatine cannot be 

distinguished from those of other melatonergic agonists 

of similar receptor affinity. In major depressive 

disorders, symptoms are not primarily of circadian 

nature and their improvement has been attributed to the 

inhibition of 5-HT2C receptors or, perhaps, an interaction 

between MT1/MT2 and 5-HT2C signaling [322]. 

However, these properties are not comparable to effects 

by classic antidepressants. For this reason, some authors 

have considered the efficacy of agomelatine to be 

insufficient in major depressive disorder [356-358]. 

Another criticism concerned biased publication on the 

efficacy of this drug [359]. However, it seems necessary 

to clearly distinguish between modes of action. The 

advantage of agomelatine does not consist in a superior 

antidepressive effect, but rather in the combination of 

antidepressive benefits with sleep improvements. This 

dual action is important because sleep disturbances are 

often induced by classic antidepressants [285, 330, 332, 

333]. 

Some other limits for melatonergic treatment can 

arise from drug interactions. This concerns mainly the 

synthetic agonists, which may attain undesired high 

concentrations in the presence of other drugs that inhibit 

CYP isoforms. For instance, ramelteon is mainly 

metabolized by CYP1A2, CYP2C9 and CYP3A4, 

agomelatine by CYP1A1, CYP1A2, and CYP2C9, 

tasimelteon by CYP1A1, CYP1A2, CYP2D6, and 

CYP2C9 [18]. Therefore, combined treatment with drugs 

such as fluvoxamine, ciprofloxacin, mexiletine, 

norfloxacin, azileuton, fluconazole or ketoconazole has 

to be avoided. In the case of melatonin, elevations 

caused by CYP inhibition are presumably relatively 

harmless, with regard to high doses of the methoxyindole 

applied in patients, volunteers and numerous pre-clinical 

experiments, without serious adverse effects. 

Nevertheless, caution is due with all melatonergic 

agonists including the natural hormone in autoimmune 

diseases, because of melatonin’s immune modulatory 

role, in Parkinson’s disease, as long as the controversy 

concerning interpretations by Willis [278, 279] has not 

been definitely settled, and with regard to reproductive 

function, especially in juveniles and during pregnancy. 

Melatonin has been applied in children and pregnant 

women under some conditions, but this requires a 

thorough weighing of benefits and possible risks. 
Concerning the approved synthetic agonists, hepatic and 

renal impairment, consumption of alcohol and high fat 

have been also listed as contraindications [326, 330]. 
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Although all clinically tested melatonergic agonists 

were well tolerable and usually showed side effects in 

the placebo range during treatments of several weeks or 

months, the possibility of long-term toxicity seems to 

require further attention. Several recent papers indicate 

long-term safety of ramelteon in their titles [360-362], 

but they mainly address mild adverse events such as 

nausea and headache, some hepatological parameters, 

absence of residual effects, rebound insomnia, 

withdrawal symptoms and dependence for periods of six 

or twelve months, but do not exclude mutagenic or 

carcinogenic actions over extended periods of treatment. 

Studies on hepatotoxicity, micronuclei formation and 

mutagenicity have to consider not only properties of the 

parent compound, but also of the main metabolite M-II, 

which attains, e.g., concentrations in the range of one 

third of the no-effect level for tumor induction of 

ramelteon [326, 330]. Toxicological concerns may also 

exist in the case of agomelatine, which is well-tolerated 

during short-term treatment, but, being a naphthalenic 

compound, would require thorough studies on long-term 

toxicity, including CYP-related hepatic effects and, 

perhaps, carcinogenicity [18, 19, 330]. With regard to 

CYP-dependent metabolism, this is less a matter of drug 

interactions, which have be avoided or minimized in any 

case, but that of a possible formation of toxic 

metabolites, which is a frequent, fundamental problem of 

naphthalenic substances. The relatively high 

recommended dose of 25 mg/d should be taken into 

account. Risks of hepatotoxicity were recently re-

addressed and it was criticized that this issue had not 

been prominently documented in the published studies 

[357, 359]. Moreover, oncogenicity of very high doses 

observed in animals experiments should be taken as a 

caveat [357]. The criteria of long-term safety, including 

properties of metabolites, have to apply correspondingly 

to the investigational melatonergic drugs. Their 

suitability and eventual superiority (i) will less depend 

on higher receptor affinities, since those of ramelteon 

may no be easily surpassed, (ii) may be associated with 

extended half-lifes, (iii) might emerge from effects in 

addition to melatonergic actions, but (iv) requires non-

toxicity over extended periods of time. 

Conclusion 

 

Progressive reductions of melatonin secretion are one of 

the hallmarks of aging. Moreover, decreases in 

circulating melatonin and/or dysfunction of melatonergic 

signaling are associated with a remarkable number of 

age-related and other diseases. With regard to the 

dependence of the mammalian pineal gland on SCN 

functioning, to the feedback of melatonin to this central 

pacemaker and to actions of melatonin at peripheral 

oscillators, many but, presumably, not all effects of this 

hormone have to be understood on a chronobiological 

basis. This is particularly evident in CRSDs, in which 

melatonin or synthetic melatonergic agonists can be used 

for circadian phase shifting and, thus, resynchronizing 

oscillators to favorable phase relationships with external 

and among internal rhythms, thereby reducing sleep 

difficulties. Moreover, melatonin is capable of 

stimulating sleep initiation, via SCN and the 

hypothalamic sleep switch and, additionally, by acting 

on other brain areas such as the thalamus. The support of 

sleep maintenance by the natural hormone or by 

synthetic melatonergic agonists is also demonstrable but 

rather limited.  

The chronobiotic effects of melatonin and its 

synthetic analogs seem to be decisive for treating mood 

disorders with an etiology of circadian dysfunction, such 

as seasonal affective and bipolar disorders. Agonists that 

only act via MT1 and MT2 receptors may have no or only 

marginal direct antidepressive effects. Conclusions on 

anxiolytic or antidepressive actions drawn from 

experiments in animal models using nocturnally active 

rodents should be regarded with caution, because 

melatonin is associated in these animals, contrary to 

humans, with enhanced neuronal, physical and metabolic 

activity, and also because sedating effects observed at 

high doses may be confused with anxiolysis or an 

antidepressive potential. 

However, direct antidepressive effects are 

demonstrable in melatonergic agonists with additional 

properties as antagonists of the serotonergic receptor 5-

HT2C, such as agomelatine and TIK-301. Whether a 

synergistic interaction between melatonergic signaling 

and 5-HT2C inhibition is of importance in these cases, as 

recently discussed [322], remains to be confirmed in 

more detailed studies. These drugs offer options for 

treating types of major depressive disorder, which are 

not successfully tractable with other melatonergic 

agonists. They also have the advantage of combining 

antidepressive actions with sleep-promoting effects, 

which is important because of sleep disturbances caused 

by other antidepressants. However, the entirely different 

mode of actions of these combined melatonergic 

agonists/serotonergic antagonists does not lead to effects 

as strong as observed with traditional antidepressants. 

Therefore, they may not be sufficient for treating severe 

cases. 

Metabolic regulation by melatonin seems to become 

an important field of future research. Melatonin is 

obviously involved in the entire complex of obesity, 

metabolic syndrome, with consequences for 
cardiovascular diseases, insulin resistance, prediabetic 

changes and diabetes type II, as shown by deviations of 

melatonin secretion and signaling and receptor 
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polymorphisms. This includes a network of 

interconnected signaling pathways, in which melatonin 

interacts, e.g., with metabolic sensors such as AMP-

activated protein kinase (AMPK) and its downstream 

factors [5, 39], mechanisms that are also interrelated 

with circadian oscillators [39]. Moreover, mitochondrial 

effects of melatonin have to be taken into account, 

although the role of MT1/MT2 signaling is still poorly 

understood in this area. To date, neither the cell 

biological basis of these connections nor the clinical 

experience suffice for recommendations for a use of 

melatonin or its agonists in this field. Nevertheless, 

research  in this direction seems to be promising. 

Although an immense body of knowledge exists on 

neuroprotection by melatonin in animal and in vitro 

models, which includes, again, numerous effects such as 

antiexcitatory, antiinflammatory, direct and indirect 

antioxidative actions, the application of the pineal 

hormone or its analogs to humans has remained 

marginal. In AD, which is also characterized by 

deteriorations of melatonin secretion and circadian 

oscillators, some moderate and, sometimes, inconsistent 

effects have been described concerning sleep. 

Reductions of sundowning were observed [363] which 

can be of value especially for caregivers. However, these 

effects vanish during disease progression, and even the 

experience with animal models indicates that a late onset 

of melatonin treatment does not result in substantial 

benefits. A similarly pessimistic judgment, except for 

some sleep improvements, has to be given for other 

neurodegenerative diseases. 

 However, benefits of melatonin or, perhaps, 

synthetic melatonergic agonists, may be expected in the 

area of healthy aging. This should not be confused with 

life prolongation, which has been demonstrably 

achieved, in vertebrates, only in senescence-accelerated 

mice [364], but not to a convincing extent in wildtype 

animals [365]. Nevertheless, the experience with 

melatonin-treated rodents indicates an obvious healthier 

aging [4, 365]. It should be noted that, also in the context 

of aging, numerous metabolic cross-connections between 

melatonin and other signaling pathways exist, which 

include energy sensing, mitochondrial modulation and 

proliferation, redox sensing and actions of aging 

suppressor genes [269, 366]. Despite numerous 

publications that relate melatonin to aging and age-

dependent dysfunctions in animal models, the 

application to humans has, in this field, more or less 

remained at a stage of discussion or a suggestion [367, 

368].  
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